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SUMMARY

Test results are presented for both symmetrical and antisymmetrical

static loading of a wing model mounted on a three-point support system.

The first six free-free vibration modes were determined experimentally.

A comparison is made of the symmetrical nodal patterns and frequencies

with the syn_._etrical nodal patterns and frequencies calculated from the

experimental influence coefficients.

INTRODUCTION

The design analysis of low-aspect-ratio wings is particularly
troublesome because of the difficulties involved in determining their

stiffness characteristics. Recently several methods of analysis of wing

structures have been proposed. (See, for example, refs. i to 4.) How-

ever, few data are available for assessing these theories. Static- and
vibration-test results are available for a 45 ° built-up delta-wing speci-

men with ribs normal to the spars (ref. 5). In order to provide experi-

mental information on the deflectional characteristics of delta wings

with another type of internal construction, static and vibration tests

were conducted on a 60 ° delta wing with skewed ribs and spars. The

experimental results of these tests are presented in the form of static

influence coefficients and vibration modes and frequencies. The static

influence coefficients were measured for both symmetrical and antisym-

metrical loading with the wing on a three-point support. The first six

frequencies and corresponding nodal patterns were measured for the wing

in an essentially free-free condition. In addition, the first three

symmetrical mode shapes and frequencies were calculated from the experi-

mental influence coefficients.
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DESCRIPTIONOFSPECIMEN

The specimen used in these tests is the 60° delta wing shown in
figures i and 2. The wing has a waffle-like skin madeof 7075-T6 aluminum
alloy riveted to a rib-spar framework madeof 2024-T3 aluminum alloy. The
span of the wing is 96.5 inches and the root chord is 89.25 inches. The
maximumoverall depth varies linearly from 4.52 inches at the center line
to 1.22 inches at the tip. A typical chordwise section is shown in fig-
ure 2(a). The internal construction as shownin figure 2(b) consists of
eleven streamwise ribs and five spars. Four spars were skewedand one
spar at the trailing edge was normal to the ribs. The spar and rib com-
ponents are identified with part numbersto facilitate reference, spars
being referred to as parts i to 5 and rib componentsas parts 6 to 26.
Sp_r i is continuous across the wing center line. Rib 6 is a 4-inch
aluminum-alloy l-beam with a 2-inch flange and a uniform thickness of
1/8 inch. Detailed dimensions of the internal construction are given
in table i. In this table all dimensions except thicknesses are given
as nominal values. The internal construction and cover before assembly
are shownin figure 3.

In order to facilitate any future analyses the area momentsof
inertia of both the spars and ribs were calculated. The values of the
momentsof inertia at the points of intersection of the spars and ribs
are given in table 2. The part numbers shownare identified in
figure 2(b).

The waffle covers were madeby machining square indentations in a
tapered plate. The dimensions of the covers are shownin figure 2(c).
The overall cover depth varies linearly in the spanwise direction from
0,489 inch at the root to 0.122 inch at the tip. Since the skin thick-
ness dependedentirely on the depth of the square indentation, extreme
difficulty in controlling this depth resulted in large variations in
skin thickness. This is illustrated in figure 4, where the spanwise
variations of skin thicknesses are shownfor each of the four semispan
cover sheets. Each thickness shown is the average of the measured thick-
nesses along the corresponding chord. It should be mentioned that the
randomvariation of skin thicknesses along the chord is similar to the
spanwise variation. These spanwise thickness variations were replaced
by a straight line through the use of a least square method which gave
a skin thickness variation of from 0.042 inch at the root to 0.030 inch
at the tip.
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STATIC TESTS

Static tests were conducted on the wing specimen in order to obtain

symmetrical and antisymmetrical influence coefficients. For these tests

the wing specimen w_s mounted on three supports which restrained normal

displacement of the wing at the supports but allowed rotation. The

advantages of this type of support are that the same support fixtures

may be used for bot_the symmetrical and antisymmetrical loading condi-

tions, and also the influence coefficients appropriate to other support

conditions can be calculated from the influence coefficients obtained

for the three-point support.

Test Setup

A general view of the static test setup is shown in figure 5. The

two rear supports were located along the trailing edge at the intersec-

tions of the first and second spars and the forward support was located

at the intersection of the forward spar and center rib. These support

fixtures are illustrated in figure 6. The forward support consisted of

a roller attached to a support fixture above the wing and a steel plate

attached to the wing. The wing was held firmly against the roller by a

weight-lever counterbalancing system. The rear supports consisted

essentially of a pin connection between a bracket attached to the rear

spar and a pedestal bolted to the floor. Self-alining bearings were

used to permit spanwise as well as chordwise rotation.

Loads were applied to the wing by means of hydraulic Jacks which

were fitted with sS_ew locks so that, once a given applied load was

reached hydraulically_ it could be maintained mechanically. Standard

strain-gage load cells placed between the wing and the jacks were used

to determine the applied loads. For the antisymmetrical tests, an over-

head loading support fixture was constructed to allow loads to be applied

to the top surface of the wing. This fixture can be seen in the fore-

ground of figure 5.

The deflections of the wing were measured by means of dial gages.

Gages were also mounted at the supports to afford a measurement of the

support movement. The dial gages used had a minimum reading of

0.0001 inch with a 0.5-inch maximum travel. Accuracy of these gages

was better than ±0.0005 inch.



4

Test Procedure and Results

Deflections were measured at the stations shown in figure 7 under

both symmetrical and antisymmetrical loading conditions. For both con-

ditions loads were applied to each of the stations in succession, and

for each loading gage readings were taken at an initial preload and at

each of three equal load increments. Maximum loads were chosen so that

no buckling or local crippling occurred and also so that the maximum

deflection did not exceed the range of the dial gages (0.5 inch). The

condition of no local failure limited the loads that could be applied

along the leading edge (forw_.rd of spar 5) to such low values that accu-

rate deflection data could not be obtained for these loads.

As might be expected, the supports deflected under loading so that

a rigid-body correction for these deflections was necessary. Inasmuch

as the rear supports were placed far outboard of the center line and the

forward support was near the tip, these corrections were based on support

deflections alone and consisted of a superposition of three types of

rigid-body motion; namely, roll, pitch, and translation.

Since the deflections at the various stations appeared to be a nearly

linear function of the load, a straight line was drawn for the load-

deflection cln_ve by means of a least-squares criterion. The slope of

this straight line was used to extrapolate the load-deflection curve to

a 1,O00-pound load. For the case of symmetrical loading on the three-

point support system_ the resulting deflections in the form of an

influence-coefficient matrix are shown in table 3. In order that the

matrix be a symmetrical matrix, each value given in table 3 is the aver-

age of the two cross-coupllng coefficients. Deviations from the mean

are given in parenthesis, the largest deviation being 0.013 inch or

3.0 percent of the _xlmum deflection.

The influence coefficients for the antisymmetrical loading case

were similarly determined and a_-e shown in table 4, where each value

given is for a 1,000-pound load. Each value is the average of the two

cross-coupling terms, with the deviations from the mean shown in paren-

thesis. The largest deviation in these influence coefficients is

0.028 inch or 5.3 percent of the maximum deflection. Loads were not

applied at station 24 because of the inability of the wing to sustain

sufficient loads at that station to allow a reasonably accurate extra-

polation to 1,000 pounds. Values shown for this station are the deflec-

tions at station 24 due to 1,O00-pound loads elsewhere. The deflection

of station 24 due to a 1,000-pound load at station 24 was not measured.
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VIBRATION TESTS

Test Equipment

The model was vibrated by means of a shaker system. This shaker

system consists of a set of electromagnetic shakers, a control console,

and a rotating-machine power supply with a frequency range of 5 to

500 cycles per second. Each shaker has a controlled force amplitude

from 0 to 50 pounds and a phase control (0° or 180 °) over the available

frequency range. The total weight of the moving element of each shaker,

including a velocity-sensitive signal generator or pickup, is 2.0 pounds.

A more complete description of this equipment is given in references 5

and 6. The equipment used for the present tests consisted of response-

measuring instruments and two electromagnetic shakers.

The motion of the specimen at resonance was obtained with a portable

probe pickup, whose output was viewed on a cathode-ray oscilloscope. The

frequency of vibration was obtained from a Stroboconn frequency indicator.

Test Setup

An overall view of the vibration test setup is shown in figure 8.

The wing was suspended from a wooden frame by a flexible steel cable

attached to the forward tip of the root chord. This method of support

allows essentially free-free vibration in the horizontal direction. The

shakers were placed on the floor and attached to the trailing-edge spar

at a point 6 inches inboard of the junction with the second spar. In

order to tune out troublesome resonances of the support cable, a small

movable mass was attached to the cable.

Test Procedure and Results

For these tests the phase controls were set to produce the desired

motion of the wing (symmetrical or antisymmetrical about the center

line). The power supply w_s turned on and the force outputs of the

shakers were equalized. The force output being held constant, the fre-

quency was slowly increased until the amplitude of vibration reached a

maximum. In order to observe the motion of the wing, the output of one

signal generator was put on the horizontal axis of the oscilloscope and

the shaker force signal (current through the shaker drive coil) was

switched onto the vertical axis. The resulting Lissajous ellipse shown

on the oscilloscope was used as an aid in determining the resonant fre-

quency. The frequency was then read off the frequency indicator and

recorded. With the wing still held at resonance, the probe pickup was

connected to the oscilloscope and an amplitude survey of the wing was
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made in order to locate the associated node lines. After the nodal

pattern and frequency were established and the data recorded, the fre-

quency was increased until the next resonance was detected. In this

manner the first 6 natural modes of the specimen were identified and

recorded. Higher modes were not readily discernible because of panel

vibrations in the skin and, hence, only the lower modes were determined.

The natural frequencies and associated nodal patterns are shown in fig-

ure 9(a) for the symmetrical modes, and in figure 9(b) for the antisym-
metrical modes.

CALCUIATED MODES

The mode shapes and frequencies of the 60 ° delta wing specimen

vibrating symmetrically in a free-free condition were calculated from

the influence coefficients for the three-point support condition by the

manner outlined in reference 7.

For these calculations the distribution of mass to the various sta-

tions shown in figure 7 had to be made. The masses (in pound units) of

all the component parts of the wing were calculated on the basis of the

dimensions of the wing given in figure 2 and table 1 with the exception

of the skin thickness, where actual measured thicknesses were used. The

distribution was then calculated in the following manner (see sketch):

!

J

d
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For a typical inboard station J, all the material located within the

trapezoidal shaded area containing j was considered uniformly distrib-

uted along the line bc. For leading-edge stations the material located

within the trapezoidal area near the leading edge w_s considered uniformly

distributed along the line ab. These sectionally uniform distributions

were then allocated to the particular chordwise stations as shown in the

sketch below:

d

J I

Each rib element was treated as a simple beam between stations with the

sectionally uniform weight distribution considered as a loading. The
reactions calculated at each station were then considered to be the mass

associated with the station. This process was used in order to take

into account at least some effect of the overhanging leading edge at
the outboard ribs. The masses associated with each station are tabulated

in table 5-

From this mass distribution and the experimental influence coeffi-

cients_ the first three symmetrical modes and frequencies were calculated,

and the results are shown in figure iO. A comparison of the measured

frequencies and their associated node lines with the same quantities
determined from calculations based on the influence coefficients can be

made by comparing figures 9(a) and iO. The experimental and calculated

frequencies are seen to agree within i0 percent for the lowest three

symmetrical modes. The calculated nodal patterns of the first two modes

have the same general shape as the first two experimental nodal patterns.

However, the calculated nodal pattern of the third mode is quite dif-

ferent from the experimental nodal pattern. This difference is believed

to be due primarily to the absence of experimental influence coefficients

for the region along the leading edge. Since the leading-edge region of

the wing represents a large portion of this structure, the lack of influ-

ence coefficients in this region would be expected to have an appreciable

effect on the nodal patterns, especially in the higher modes. Also, some

of the differences between the calculated and experimental nodal patterns

and frequencies might be due to extreme variations in waffle skin dimen-

sions which directly affect the mass distribution and to the large over-

hanging leading edge which necessitated an approximate mass distributio_

as indicated above. Since the difficulties involved in calculating the

antisy_aetrical modes and frequencies are of the same character as those
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encountered in the symmetrical case and since the antisymmetrical results

probably would not present any additional informatlonj the antisymmetrical

modes and frequencies were not calculated.

CONCLUDING REMARKS

The stiffness characteristics of a 60 ° delta wing were obtained in

the form of influence coefficients and natural modes and frequencies.

Comparisons show that the measured frequencies and those calculated using

the measured influence coefficients agreed within lO percent for the

three lowest symmetrical modes.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., October 24, 1958.
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TABLE i.- DIMENSIONS OF INTERNAL COMPONENTS FOR SEMISPAN OF MODEL

T
a

--d =- c-----_

Part I L,(S_efig.2(b)) ±_. in. In. in. in. deg in.

Spars

al 48.250 1.09 0.750 44. 406

2 58.250 3.62 .750 0

3 54. 875 2.79 1.125 0

4 64.800 2.77 .750 0
5 76.425 3.65 .750 0

o o.48 o
3- 541 1.21 3-000

3.621 .38 1.622

4.196 .36 1.696
5-164 .48 O

4.5 0.0795

5 .0810
0 •0650

0 •0638

1.5 .0808

Rib Components

b6 88.250
7  125 0.750 o
7a 13.ooo 2.47 .75o 0
8 13.375 2.43 .750 0

8a 13.625 2.52 .750 0

9 15.250 2.46 .750 0

I0 16.250 2.46 .750 0
ii 11.250 2.46 .750 0

12 8.25o 1.89 .75o o
13 10.875 1.98 .750 0
14 13.250 1.98 .75o o
15 15.500 2.01 .750 0

16 10.625 2.01 .750 0

17 3.750 1.37 .750 0

18 8.437 1.45 -750 0
19 9-625 1.45 .750 0

20 ]-0.375 1.47 .750 0
21 6-575 1.47 .750 0

22 6.500 .91 .750 0

23 6.375 .91 .750 0

24 7-750 .91 .750 0

25 3.5oo .91 .750 o
26 9.676 .35 .750 0

1.791 0.35 1.893

2.291 .31 1.893

1.870 2.43 2.665

1.791 2.52 2.747

2.540 2.46 2.696
1.696 2.46 2.664
1.664 .66 0

2.o41 .53 1.893
1.791 1.98 2.871

1.746 1.98 2.446

1.696 2.01 2.414
1.664 .3o o
2.041 .73 1.893

1.791 1.45 2.871

1.746 1.45 2.446

1.696 1.47 2.414

1.664 .45 o
2.246 .91 1.893
1.746 .91 2.196
1.696 .91 2.1694
1.664 .48 0

2.686 .35 1.893

o 0.o803
o •o799
2 .0803
2 .o81o
2 .o645
2 .0647
6 .0645
o .0642
2 .0630

2 .0629

2 •0515

6 •0516

o .05]_o
2 .0521

2 •0521
2 .0407

6 .0409

2 . o519
2 .0409

2 .0409
6 .o407
2 .o513

aSpar i is continuous over the full span.

bFour-inch I-beam (see fig. 2(b)).
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TABLE 2.- AREA MOMENTS OF INERTIA, I, OF THE SPARS

AND RIBS ABOUT THEIR CENTR01DS

Spars Ribs

Part Location, Location,
percent I, in. 4 Part percent I, in. 4

(see fig. 2(b)) semispan (see fig. 2(b)) semispan

i

3

4

0.000
i•000
•000

•171

' .427

.727

i.000
' .000

•13o
, •327

.558
• 789

•i.000
•000

.124

•321

.55o
•779

0.i1673

•04149

1.02374

•79207

.5122O

•27495

•15184
.6O881

•48454

.32791

.18867

•09206

.03631

.44639

.55518

.236o1

.13320

.06368

6

7

7a

8
8a

9
lO

12

13
14

15

17

'O.O00•SOO
.I.000

0001:000

.0001.000

.5oo

.500

.S00

.SO0
[ .000

[i.000
.500
.5oo
.SOO

.0001.000

1.000

.000

.127

.314
i

.540
•767

1.000

•02313

.99542
•77492

.51126

.27881

.12619

.03839

18

19
2o

22

23
24
26

•500
•5oo
•5oo
.5oo
•5oo
.SOO
.5oo

0.16015

1.82487

.20247

.02048

.32138

•01855

.33074

.3186O

.34642
•26281

.27043

•02379
.15703

•16667
.16641

.14082

.o2734

.06998

.07768

.o7768

.06220

.03678

.02890

.02890

.01395
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TABLE 3.- INFLUENCE C0_FICI/_NTS FOR THE WING ON A THREE-POINT

Stations are identified

Deflection
station

1

2

5

4

6

7

8

9

I0

ii

12

i5

15

i6

17

18

2h

25

26

27

28

29

Load

(,,

1 2 5 4 6 7 8 9 io ii 12 15 14

(0.0019(-0.009)-0.00_)(-0.0089 (0.002)(0,oo5) (0.0019(-0,009)(0.0019 (0.004) (0.0081(-0.0019
0.4_ .299 .205 .092 -.074 .585 .290 .206 .ii 7 .037 .302 ._h .208

(-.oo29 (-.oo59 (-.002) (-.0099 (.00_) (.0059 (,o_) (-,0099 (,OOl) (-0059 (.008) (-.OOl)
•299 .257 .194 .094 -.076 .279 .257 .187 .122 .O40 ,225 .202 .182

(.004) (.005) (,0019 (.oo6) (.0061 (.oo6) (.oo5) (-.0019 (.001) (.0059 (.OlO) (.oo5)
.205 ,194 .180 .095 -.069 .189 .178 .160 .i15 .040 .192 .149 .190

(.0051 (,002) (-.0o2) (-,0109 (.00_) (.0049 (.002) (.002) (,0089 (.0059 (.0099 (.001)
.092 .09h .095 .068 -.060 .086 ,085 .085 .074 -059 .071 .072 .078

(._8) (.009) (-.0059 (.oo99 (.oo6) (.007) (.006) (.0007) (.OOl) (.006) (.oo_) (.007)
-.o74 -.o76 -.o69 -.060 .IS -.069 -.o74 -.o71 -.o65 -.o22 -.o58 -,060 -.068

(-.0029 (-.oo5)(-.0079 (-._) (-._6) (.0019 (-.0019 (-.0079 (.000) (-._) (._) (-.005)
•585 •279 .189 .086 -. 069 •363 .274 .193 .119 -035 .307 .245 -197

(-.0059 (-.oo29(-.oo5) (-.0059 (-.0069 (-.0021 (.00o) (-.oo6)(-.0019 (.coo) (.oo59 (-.005)
.290 -257 ,178 .085 -.074 .274 .256 .182 .ll& .o56 .22& .206 .180

(-.oo2) (-.0019(-.oo49 (-.001) (-.007) (.001) (.00o) (-.004)(-.0019 (,0019 (.0059 (-,00_)
,206 .187 ,160 .085 -.OTl .195 .182 .171 .115 .0hO .160 -157 .16A

(.009) (.00_) (.0019 (-.0029 (-.0069 (.007) (.00_) (.004) (.0019 (.006) (.007) (.003)

•117 ,122 .i19 .074 -.065 .119 .ll4 •115 .io8 .o_ 5 .096 .099 .i12

(-.0019 (-.001)(-.ool) (-.oo99 (-.0019 (.00o) (,002) (.001) (-.001) (.ool) (,002) (.0059
• o57 .o4o ,o4o .o35 -.o22 .o39 .056 .o4o .o45 .055 .o29 .o52 .o41

(-.0049 (-.002) (-.00D (-.004) (-.0069 (.006) (.o00) (-.oo_) (-.0063 (.o00) (.00_) (-.00_)

•302 .223 ,152 .071 -. 058 .507 .234 .160 .096 .029 .278 .211 .166

(-.O_) (-._) (-._9) (-._) (-._) (--_) (--_) (-.004) (--007) (-.001) (-._) (-._6)

.254 .202 .lh 9 .072 -.060 .245 .206 -157 .099 ,052 ,211 .200 .167

(.0019 (.ool) (-.005) (-.0o2) (-.0069 (,005) (.00_) (,0o2) (-,00_) (-.005) (.00_) (.0069
.206 .182 .1,50 .078 -. 068 .197 .180 .16A .112 ,041 .166 .167 .189

(.oo2) (.00:) (-.002)(-.oo19 (-.0049 (,003) (.005) (.oo2) (-.005) (.000) (,oo4) (.oo6) (.00o)
.i149 .142 .127 .O75 -.066 ,142 .i_3 .134 .115 .047 .118 .195 .145

(._) (.0019 (-.002) (.coo) (-.0o29 (.0059 (.00_) (,0059 (.00o) (-.0019 (.00_) (._) (.00_)
.089 .091 .O86 .052 -.049 .08_ .O86 .087 .082 .050 ,070 .077 .090

(-.0029 (-.0023(-.0059 (-.0019 (-.0029 (.001) (-.001) (,001) (-.0o23 (.0009 (.000) (.oo5) (.0003
.160 .120 ,085 .058 -.032 .159 .120 .o86 .052 .016 .156 .120 .092

(.0049 (-.0059 (-.oo29(-.0019 (-.0059 (.004) (.oo5) (.0019 (-.0029 (.0019 (.0o59 (.007) (.005)
•183 .156 .103 .050 -. 04] .175 .145 .if0 .069 .022 .199 .145 .125

(._) (._o) (-.0039 (-._) (-.0079 (.003) (.oo4) (.0019 (-.oo_)(.-._3 (.o_) (._) (-.0059
.165 .145 .116 .059 -.052 .199 .142 .127 .086 .052 .158 .133 .i5o

(._) (.005) (-0019 (-0019 (-.Oll) (.0069 (-.007) (.005) (-.0029 (._o) (.007) (.oo9) (.oo2)
•159 .lh5 .124 .069 -.095 .147 .128 .i_2 •105 •041 .125 .129 .iN8

(.0029 (.0019 (.00o) (.o00) (-.0029 (.o0_) (.006) (.0059 (-.0019 (.00o) (.0069 (.o_) (.oo_)
.125 .L24 .i12 .066 -.060 .118 .118 .i18 .i02 .049 .iO0 .i08 .12 7

(-.00_) (.0029 (.000) (.000) (-.0113 (.0059 (.0043 (.0029 (- .0019 (.012) (.005) (.007) (.002)
.o54 .o57 .O5O .o27 -.o5o .06o .o57 .o55 .o40 .o25 .o51 .057 .o63

(.0019 (.0009 (-.0029(-.0019 (-,00_) (.0o29 (.005) (,0009 (-.0099(-.o219 (,005) (.00_) (-.0o2)
.iO1 .097 ,089 .O48 -. C41 .096 ) .095 .090 .070 .029 ,081 .088 ,I01

(.0019 (.coo) (-.0o2)(-.0019 (-.0_) (.0o29 (.0059 (.0009 (-.0049(-.0o2) (.004) (.0_) (.0019
.i09 .I09 .099 .058 -.050 .i05 .104 .i09 .086 .039 .087 .097 .I15

(,oo7) (.0069 (.005) (.oo29 (-.0059 (.008) (.010) (.oo_) (,o019 (.0011 (.0079 (.ooe) (.0o2)
-.095 -.055 -.018 -.007 .009 -.094 -.055 -.0_0 -.008 -.005 -.052 -.036 -.024

(.007) (._69 (.0059 (.0029 (-.0059 (._89 (.0109 (.004) (.001) (.0019 (.0079 (.0_) (.002)
-.O55 =.o55 -.o18 -.oo7 .0o9 -.O54 -.o55 -.o2o -.008 -.003 - .o52 -.o56 -.o24

(._79 (._63 (._) (.005) (-.o_) (.0079 (._) (._) (-.0019 (.o_) (._6) (.007) (.0059
-.oo9 .006 .o16 .o15 -.008 -.Oll .o0_ .o16 .o17 .009 -.019 .oo2 .o19

(.o06) (.oo_) (.coo) (.00o1 (-.oil) (.0061 (.0061 (.0011 (-.005) (-.001) (.oo5) (.oo7) (-.006)
.028 .040 .045 .O28 -.0i9 .0_ .0_8 .0_ 7 .0_i .019 .019 .059 .060

aVslues in parentheses are deviations from the mean v_lue.
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SUPPORT SYgT}_4 BASED ON A I,OOO-pOUND gY_ICAL LOAD

in figure 77

19 17 18 19 ____2° 21 25 J 2__ _6 _7 _8 29
(-0.002)(-o.001)I (o.oo55 .005)60.002)(-o.0095_(-o.0055(0.005)(-o.0015(-o.0025(-o.007)(-o.007)(-o.007)(-o.006)

,i49 .089 1 .160 .185 .165 .199 ,125 .09_ .101 .i09 -.059 -.O_9 -.009 .028

(,000) (-.OOi) I (.0015 .OO4) (.O00) (-.OO3) (-.0025 (-.0025 (.000) (.000) (- .0065 (- .006) (-.0095 (- .0055

.142 ,091 l .120 .136 .143 .i_3 .L_ .097 ' .O97 .109 --039 --039 .OO6 ,ObO
.÷--

--(.OO2) (,005) I (.002) .0O2) (.002) ( .0005 (.001) (-.0015 (.002) (.0025 (- .0oh) (-.0045 (- .005) (.000)

.127 .086 I .065 .105 .116 .124 .112 •090 .089 .099 -.018 -,018 .016 .045

(.ooi) (-.OOl) I (.ool) .ool) (.00a) (.oo2) (.ooo) (.o005 i ) (,00o) (-.001) (-.0015 (-.004) 600o)
•o75 .o52 I .o5_ .o9o .o99 .o69 .o66 ,o27 .o98 -.oo7 -.co7 .o15 .o28

(.00_), (.00_I I (.oo51 .0055 (.008) (.olo) (.OO5) <.o215 (.0055 (.0o4) ( ,0055 (.oo5) (.009) (.020)

-.o66 i -.o49 I -.052 .o41 -.052 -.055 -.o6o -1o5o -.o41 -.05o ,oo9 .oo9 -.oo8 -.o19

(-.00_) (-.00511 (.o005 .00_1 (-.005)(-.007) 6.004) (-.0063,(-.oo23 6.005) (-.oo8) (-.oo85 (-.00a) (-.00_)
.142 .o84 I .l_g .17D .159 .147 .228 .o6o .o96 .2o5 -.o54 -.ogh -.on .029

(-.o05) (-.009) 1 (.o<30) .oct) (-.oct) (.0065 (-.0065 (-.oog)l (-.003) (-.005) (-.o2ol (-.ozo) (-.oc95 (-.oo9)
.l_ .086 [ .120 .lh 5 .142 .128 .lib -097 | .099 ,lOk -.035 -•053 .004 ,058

f

(-.ore) (-.oos)l (.00o) .oo2) (-.00a (-.0055 (-.0055 (-:oo25/>551(.OOl) (-.0015 (-.oo55 (-.0055 (-0025 (-.o_)-134 .087 I .086 .ii0 .127 ,152 .118 .090 .105 -. 0"20 -.OeO .016 .047

(•005) (.00o) I (.COl) .002> (.004) (.005) i (•00]-) (.001) (._0 ( ,oc,_ ) (-.001) (-moo (.002) <.002 3

.113 .082 I .092 ,069 .086 ,105 .102 .OhO .070 .086 -.C08 -.008 .Ol 7 .Ohl

(.CO0) ( . 002_ I (.000) .000) (-005) (.000) , ( . 000) (- .011) (.002) (,002) (-, 001) (-.001) (.001) (.001)

.047 ,_050_ .016 .022 .052 .Ohl _.049 .029 ,025 ,059 -,C05 -.005 ,005 .015

(-.oo41(-.004)I(-.00_) .0061 (-.00_) (-.oo85;(-.0065(-.00_) (-.005)(-.0045 6.0071 (-.007) (-.oo6) (-.00_)
.ll_ .070 [ .196 .199 .I_ .12_ .100 .051 .051 .0_ 7 -.o_2 -.052 -.019 ,019

[_55 ,0075 (-.ooi] (-.008) (-.0075 (-.007) (-.004) (-.0065 (-.0085 (-.008) (-.007) i (-.007)

.t25 .o77/ .L°O .149 .153 _ .129 .108 ,_57 ! .O88 -O97 -.056 -.056 .002 .055

-V_ (-oo-_i_ (gi__ _ (00_ /-0021 (-00,1 _ (_ (00o_ (-_ _-_ (-.002) (006_
.i_5 .o9o 1 .o_ i .125 ,15o .I$8 .127 .065 .ioi .Ii 5 -.o_4 -.o2h .oi 9 .o6o

001, (005 002, (001,
,157 ,107 | .0_9 | .O88 .116 I .146 .lhO / }_ .O97 .117 -.009 -.009 .026 .056....... +

(.oo0 (.o0011 .oo2) (.0075 (.005) I (.COl) (.0013' (.0095 (.009) (-.COl) (-.oo__) (.oo_) (.00_)

_ov _ , .o5_ :o5___or? _:}o1_ ._ t .o56 .o6v _ -.005 -oo5 .o19 .o_
(-.ooi) (.00o) i .ool) i (.o00) (-.COL) (.COO) (.005) (.o00) (,001) (.coo) (.00o) (.004) (.COl)

.o6_ .o5_ I .mS ._o2 I .o82 .o69 ,0_9 .o_ .0_2 .o47 -.0_ -.0_ -.0_o .001

(.000) (-.001) 1 (.oo2) (-.001) (-,005) i (-.002) (-.0o2) (.coL) (.coo) (-<.co_) (-.005) (.o001 (.oo3}
.0_ .o5_ _ .102 .150 ,lib ,100 .081 .090 .072 .078 -.0_5 -.025 .0o7 .o55

(-.001) (-.00751(.ooo) [o00i (-.00a 6.005) (-.00_1 (.o0051 (.00_) (-.00_) (-.oo_) (-.00_1 (.00o)
.116 .070 I .0_0 .114 .157 .24_ .]_3_8 .o8o .ll4 .119 -.00_ -.00_ .059 .066

(-.002) (-.0055 I (.ooi) ,0025 (.0025 (-.001,) (-.o(Y25 (.0055 (.0025 (-.0055 (-.0055 (-.0015 (.0025
.i_6 ,_[uz I ,06,9 .I00 .144 .lgh .171 .076 .I44 .164 -005 -005 -052 -_92

(.005) (-.00_)1 (.o00) .0055 (.oo2) (.00_)
.140 .122 1 .0_5 .081 .i18 ,IT1 ,197

(.00_) (.,ooo)I(-.0025 .oo551 (.00_) (.0055 (.o_)

"°56 _ .___ [[ i

• O56|.O25 .O8O .o76 .

-- _00ol(-.00.) <-.oo651(._) (._) (..o_) (_._)
,o97

.067 I .o42 .llh .24% .121,

----(-.005>.2_v._(-_)ll__°_7('°°_):o00_)[(.00o).n9(-:o_).27_(-'°2°)

(.002) (.0025) (-.0015 .004)) (.00'5) (.0oh) (.OCt)

-._ -_ -.o48 .005__(.o_>(._) (.001)I (-.00_.) .00_)] (._) (.o(aO

_%.oo9 -.001 i :.oh8 ._54 2:008 .oo5 .
(-.0015 (-.005)(-.0010 .0015[ (._) (.002) (-.0055

--..0"52•o26 .o19 --"_-- "_F_ "o55 .

1-.00_>(-.00_11(-.002_ .00o_1(.00o>(-.002_](-:_)
.o56 .o._2 i .001 .o55 [ .o66 .o92 i

(- [O(Y2)06_ ( .0085 ( ,0105 (- .0015 (- .001) (,005) ( .0045.124 ,17 h -005 ,005 .o48 .O89

(,oos)
.o91 .O96

(-.oo8)

.o96 .19o

(-.0091 (.ooh)
•o89 .283

(-.OOl) (.o2o)
.ol_ .oh7

(-.00z1 (.OLO)
.oJ_ .c_7

(-.00_)) ( .0155
•076 .119

(-. (.oo8) (.006) (.coo) (.00o) (.001)
o_) .165 .189 .1_2 .142 .26o .596

(.0095 (._)t (.00o) (.o(_5) (.oo8)

(-.co55 (-.ocg) (-.009) (-.m25 (-.oo85
.185 .o47 .oh7 .119 .165

(-.OO6) (-.006) (-.0061 (-.oo6)
,257 .o57 .o57 ,lo9 ,1B9

(.007) (.coo) (.OOl) (.oo25
• o57 .25_ .25_ .so7 .142

(.oo7) (.00O) (.0015 (,0ol)

.057 .25 I_ .234 .207 .142

(.009) (-.00_)(-.00_) (-.002)
.io9 .2o? .2o7 .28_ .26o
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TABLE 5-- WEIGHT DISTRIBUTION OF DELTA WING

Station Weight, lb

(see fig. 7) Ribs Skins Concentrated Spars Rivets Total

i

2

3
4

5

6
7
8

9
i0

ii

12

13
14
z5

16

17
18

19
20

21

22

25
24
25

26

27
28

29

Total

o. 22o8

.5687

•6586

•7146

•6o71

.2059

.2748

1.0019

-7955
.5042

.5171

.o759
•2696

•5480

.5311

.5247

.O324

.1314

.19o5

.1741

.1589

.0571

.0959

.0897

.o87o

•0035

•0356

•0570

.o136

8.5412

1.0224

1.8764

2.1538
2.5812
2.2202

1•6776

.7566

1.5006
1.6660

1.8506

2. 7766
.6084

1.1468
1.5252

1.7584

3.5818
.3730
.8046

1.2222
1.4392

2.7778

•4966

•7070

.8698

1.7678

.0422

.2076

.2660

.5764

59.83o8

0.0563
.lO68

.4556

.lZ82

1.2680

1.4619

5.4668

0.0980
.14oo
.1345
.0990
.1243

•2156
.2708
.2236
.1955

.2982
.2548
•57;.55
.5002
.2695

•45o8
•2744

•4669
.3668

.3389

.559z

.5116

•4119

.3914

•6577

.12o2

.2138

.2499

.5o68

8•4965

0,0157
.0254
•0202

.0221

.0263

.oo99

.0136

.04o9

.0272

.0207

.0282

.oo94

.0197

.o16o

.0174

.0258

.0094

.o16o

.0122

.0136

.0225

.0]_27

•0o89
•0099
•0174

.0O47

.0033

.oo_

.0075

o. 48o4

1.3996
2.7622
2.9672
3.2127
3.4801

1.9379
1.2572
2.6096
2.6808
1.1148

5.0935

.9376

1•8677

2.1639

.5962

6.1196

1.6455

i.7775
i.7669

.5718

4.8903

2.0576

1•7214
•4462

3.4271

.1855
•46o0

.2555
i.41o8

60.8161
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Figure i.- Delta-wing test specimen. L-58-14D8
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Section A-A

89,25

96,5

1.22

(a) Overall view.

Figure 2.- Nominal dimensions of the delta-wing specimen.
sions are in inches.

All dimen-
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4

Symmetrical about

II

I'

ili

1.36

(b) Internal construction.

Figure 2.- Continued.
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Figure 2.- Concluded.
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Figure 3.- Wing-speclmen assembly. L-899_1
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.O5

Semispan
cover sheet

.O4

Skin

thickness,
inches

.03

.02
t I I I I I I I I

0 6 12 18 24 5(3 36 42 48

Distance from tip , inches

Figure 4.- Spanwise variation of average chordwise skin thicknesses.
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.j_W Roller

Bearing

ing

u x___ Counterbalancing

(a) Forward support.

plate

system
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--Shaft

\ '\\\

bearing

(b) Rear supports,

Figure 6.- Support fixtures.
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Figure 7-- Station locations.
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Ist Mode

(90.6 cps)

o Shaker location

2d Mode

(102,3 cps)

5d Mode

(171.2 cps)

(a) Symmetrical.

Figure 9-- Modes and frequencies of delta-wing specimen (experimental).
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haker

l o o
Isl Mode

(825 cps)

location

2d Mode

(145,1 cps)

/-

. /
5d Mode

(2079 cps)

(b) Antisymmetrical.

Figure 9-- Concluded.
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Ist Mode

(82,4 cps)

---Uncertain region

i

2d Mode 3d Mode

(99.6 cps) (155.5 cps)

Figure i0.- Modes and frequencies of delta-wing specimen (calculated

from the symmetrical influence coefficients),

NASA- Langley Field, Va. L-161
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